Ecologic genomics of DNA: upstream bending in prokaryotic promoters.
نویسندگان
چکیده
After our analysis of the distribution of predicted intrinsic curvature along all available complete prokaryotic genomes, the genomes were divided into two groups. Curvature distribution in all prokaryotes of the first group indicated a substantial fraction of promoters characterized by intrinsic DNA curvature located within or upstream of the promoter region. We did not find this peculiar DNA curvature distribution in prokaryotes in the second group. Remarkably, all bacteria of the first group were mesophilic, whereas many prokaryotes of the second group were hyperthermophilic. We hypothesize that DNA curvature plays a biologic role in gene regulation in mesophilic as opposed to hyperthermophilic prokaryotes, i.e., DNA curvature presumably has a functional adaptive significance determined by temperature selection.
منابع مشابه
Purification and in vitro characterization of the Serratia marcescens NucC protein, a zinc-binding transcription factor homologous to P2 Ogr.
NucC is structurally and functionally homologous to a family of prokaryotic zinc finger transcription factors required for late gene expression in P2- and P4-related bacteriophages. Characterization of these proteins in vitro has been hampered by their relative insolubility and tendency to aggregate. We report here the successful purification of soluble, active, wild-type NucC protein. Purified...
متن کاملCoexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription.
We analyzed the periodic patterns in E. coli promoters and compared the distributions of the corresponding patterns in promoters and in the complete genome to elucidate their function. Except the three-base periodicity, coincident with that in the coding regions and growing stronger in the region downstream from the transcriptions start (TS), all other salient periodicities are peaked upstream ...
متن کاملClues and consequences of DNA bending in transcription.
This review attempts to substantiate the notion that nonlinear DNA structures allow prokaryotic cells to evolve complex signal integration devices that, to some extent, parallel the transduction cascades employed by higher organisms to control cell growth and differentiation. Regulatory cascades allow the possibility of inserting additional checks, either positive or negative, in every step of ...
متن کاملA third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase.
A DNA sequence rich in (A+T), located upstream of the -10, -35 region of the Escherichia coli ribosomal RNA promoter rrnB P1 and called the UP element, stimulates transcription by a factor of 30 in vivo, as well as in vitro in the absence of protein factors other than RNA polymerase (RNAP). When fused to other promoters, such as lacUV5, the UP element also stimulates transcription, indicating t...
متن کاملIn simple synthetic promoters YY1-induced DNA bending is important in transcription activation and repression.
Depending on promoter context, YY1 can activate or repress transcription, or provide a site for transcription initiation. To investigate whether the ability of YY1 to induce DNA bending influenced its ability to activate and repress transcription, simple synthetic promoters were constructed in which the YY1 binding site was inserted between the TATA box and either the NF1 or AP1 recognition seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2000